Satellite Component

  • In November 2021, GTMaritime published a white paper: “Maritime Communications - A look over the horizon.” The report, available here, is built around three broad Sections – 1. “Basics of marine Communications;” 2. “The connected ship;” and 3. “Special services.”

    Then, each Section presents a closer look at various topics. The “Basics” section, for example, covers regulatory issues established by IMO treaties and national agencies. It presents the terms and concepts that define satellite systems and networks, including an explanation of various electromagnetic bands, e.g., L-Band Ka, Ku (important for maritime VSAT), and how they are used by satellite and equipment providers. The “connected ship” section covers cybersecurity and performance monitoring. “Special services” looks at training, telemedicine and future communication planning.

    Each topical section closes with an “On the Horizon” summary that anticipates emerging issues and how they are likely to develop in the not-too-distant future, which, in this fast-moving field, closes in rapidly. If maritime communications is one of your assigned duties, this 54-page guide provides a solid workplace foundation.


    As in every other field closely linked to technology and digitalization advances in maritime communications present a fascinating array of new and emerging opportunities. These developments are changing just about every aspect of every singular way that communication occurs – from co-worker conversations to safety monitoring to vessel tracking to Internet-of-things capabilities and, eventually, to remote and maybe even autonomous operations. And it’s an optimist’s world: service is better, capabilities are expanding, costs are declining.

    Depending on its work zone, not every ship faces the same communications demands and the equipment to meet those demands. The Global Maritime Distress and Safety System (GMDSS) is a starting reference, and, in some ways, a historical one. In general, GMDSS requirements increase the farther a vessel works from a coastline and moves to increasingly distant Sea Areas (1 thru 4), where each Area demands upgraded communication links to, minimally, meet Safety of Life at Sea (SOLAS) requirements.

    Digitalization: Unstoppable
    In 2022, though, while safety is still a foremost concern, the notion of limited, bare-bones communication, based largely on the need for emergency contact, is, well, so yesterday. Now, VSAT (very small aperture terminal) satellite linked digital systems pretty much give a captain and crew whatever they want regarding communications, whether for people on board or for reports from the vessel itself, whether operations are ten miles from shore or 1,000 miles.

    Chris Watson is VP marketing and communications with KVH Industries, Inc. KVH provides hardware and communication services across the marine sector. “We are seeing trends throughout the commercial maritime industry,” Watson said, “for VSAT and IoT connectivity. Cellular service is also important when vessels are in port or working closer to shore, e.g., tugs working in rivers and harbors.”

    A big change over the last few years has been increased availability from satellite technologies because of investments in Ka and Ku bandwidth (the abbreviations reference specific sections of the electromagnetic spectrum. Again, see GTMaritime’s white paper.) Older bandwiths, e.g., L-Band, are congested, with high prices. New capacity is important for service and economics.

    Ku and Ka costs have dropped. Ka, for example, has lower manufacturing and transport costs. Ku band coverage is more extensive and may be better for a customer’s particular operations. Ku band is used for most VSAT systems.

    “The migration from L-band to Ku-band VSAT,” Watson explained, “has been going on for several years, but has really accelerated recently because ship operators know there are cost benefits with digitalization.” These benefits include higher quality Internet service and personal communications for crew members – important for morale. With VSAT, a crew can engage in video conferencing. The vessel can install security cameras. Tech and operations support can be remote. These systems are flexible, too – they can be configured, for example, to automatically switch from VSAT to cellular when a vessel is in port.

    KVH’s TracPhone system, for example, offers unlimited data, vessel tracking and a dedicated voice channel. It includes an advanced network-level firewall to assess and mitigate risks. Physically, system requirements are minimal: a satellite communications antenna. Operationally it just needs an active airtime account. Collins said that with KVH’s mini-VSAT Broadband satellite network “each vessel can choose a particular airtime package, i.e., amount of data, for their needs, such as email, crew Internet, etc.”

    Noise fighting algorithms
    Crew communication is another area in which technology is making striking advances, particularly in difficult environments. Consider David Clark Company’s digital intercom systems designed for the high-speed, small boat market, where unbroken communication is vital, e.g., police interdiction, search and rescue and firefighting.

    When Zodiac ZH outfitted its 1300 OB Hurricane interceptor it chose David Clark’s 9100 system because of its versatility and ease of use, and it provides full intercom and radio functions into each user’s headset. Indeed, the Hurricane’s four 350 HP Mercury outboards make for a very noisy workplace. The 9100 headsets effectively block the noise but still allow communication.

    “The 9100 series uses SMART VOX technology that adapts to background noise in real time,” explained Bob Daigle, systems manager with David Clark Company. Algorithms distinguish noise from speech, for instantaneous and effective mic control with no manual adjustments.

    “The Series 9100 is easy to configure and operate,” Daigle commented. A simple user interface, accessible via laptop computer, allows crews to program individual user access, talk and listen, for intercom and each radio on the system, including priority settings. As necessary, say, when boarding another vessel, crews can reconnect a headset to a wireless belt station to maintaining communication.

    “The 9100 offers flexibility and redundancy,” Daigle explained further. “For example, a coxswain on a police interdiction boat would want a wired headset station in order to provide remote push-to-talk switches on a throttle control, so as to key a radio without taking one hand off the steering wheel.”

    Wireless is reliable up to 100 meters; however, in optimal line-of-sight conditions the range can reach up to 500 meters.

    (Photo: David Clark Company)

    Engineering evolution
    Another technology being developed for expanded communications is VHS Data Exchange System (VDES). In its white paper, GTMaritime refers to VDES as an automatic identification system (AIS) “on steroids.” Development was started by the International Association of Lighthouse Authorities’ e-NAV Committee.

    VDES will make it possible to send broadband data without a satellite link, making communication more economical. However, service would be limited to near coastal waters, say, within 50km from the nearest land-based equipment. Still, if a vessel works solely in Sea Area 1, and doesn’t need global connectivity, VDES will provide upgraded communication and navigation without increasing costs. GTMaritime writes that “VDES is capable of facilitating numerous applications for safety and security of navigation, protection of marine environment, efficiency of shipping and others.”

    Jan Safar, PhD and Alan Grant, PhD are researching VDES with the R&D arm of the General Lighthouse Authorities of U.K. and Ireland. In September 2021 they presented a paper – “VHF Data Exchange System on-air trials: The journey so far” – to the Institute of Navigation conference in St. Louis.

    In reply to email questions, Safar and Grant said they expect that with a “high power” setting, VDES coverage should extend to about 22 n-miles, at least from their working reference point (Harwich, UK, on the North Sea coast). Noise levels – from machinery to other radio equipment – remain an issue. Research continues in 2022.

    Safar and Grant were asked about interference from wind energy towers. They said that “in brief, we saw an impact due to reflections from the rotating windmill blades but only in close proximity (perhaps within a few hundred meters).” New receiver designs, they said, should offset this and they don’t expect a significant deterioration in performance. “However,” they cautioned, “this remains to be verified.”

    In March, Saab and the Danish tech company Sternula ApS announced a VDES partnership in which Saab will provide 32 AIS/VDES ship transponders with “both terrestrial and satellite VDES functionality.” In the announcement, Saab refers to VDES as “the next generation of AIS” and that “VDES will increase maritime safety and contribute to a greener shipping industry.” Sternula writes that “for the rest of this decade, (VDES) technology will enable a shift from today’s manual administrative processes to a highly automated maritime industry.” System installation started in March and continues to January. The pilot will include working customers and will also inform Sternula’s MARIOT project, i.e., the company’s maritime Internet-of-Things research.

    The connected ship
    Digitalization, of course, has changed the whole concept of communications; considered mostly just a human trait not that long ago. Now, humans don’t even need to be present. This trend is really just starting; it places new demands on software and satellites.

    GTMaritime’s report explains that vessel monitoring has been around for almost 20 years, calculating such factors as fuel use, engine power and load and ballast capacity. However, only the ship’s crew could take real time advantage of that information. Data could be archived but a historical review was too late for real time decisions about fuel consumption or operational efficiencies.

    Communication advances are now making real time awareness standard, and not just on the vessel itself. Isolation is over. Software now provides real time data to a shore office or a cloud-based reporting system, allowing company personnel anywhere, anytime to be active in the ship’s sailing.

    GTMaritime references the Marorka Onboard system to exemplify these advanced software-communication developments which can include numerous metrics such as fuel consumption and electricity production and consumption. By tracking multiple vessels simultaneously, for example, managers can identify, and correct, a vessel that isn’t operating optimally compared to others in the fleet. Looking ahead, IoT applications will move connectivity to the next level.

    Outer space
    GTMaritime predicts that these new demands will increase the load on communications systems. However, they further predict that this new monitoring and tracking will reduce energy costs to such a degree that the level of fuel savings is likely to cover the extra cost of communications “many times over and at the same time allow capacity for further changes such as assisted maintenance or remote operation.”

    Therese Jones is senior director of policy for the Satellite Industry Association, based in Washington, DC. She said that new satellite communications services are continuously coming online. Technology is edging towards a world of 5G and IoT maritime applications, Jones said. “These services,” she added, “may allow for autonomous vessels, and connected IoT sensors may be used for different applications from fuel sensors to monitoring emissions, or real-time performance evaluation of vessels.”

    Therese Jones, Senior Director of Policy for the Satellite Industry Association, said new satellite communications services are continuously coming online. Technology is edging towards a world of 5G and IoT maritime applications, Jones said. “These services,” she added, “may allow for autonomous vessels, and connected IoT sensors may be used for different applications from fuel sensors to monitoring emissions, or real-time performance evaluation of vessels.” (Photo: Satellite Industry Association)

    Jones referenced planned studies to consider new maritime satellite service allocations “to enable a new VHF Data Exchange System satellite component.” She said that new remote sensing applications are emerging, and she referenced “synthetic aperture radar (which) can be used to detect dark vessels at sea, monitor ice flows in the Arctic/Antarctic, and see through clouds even during hurricanes. Radio Frequency (RF) mapping from space can detect individual RF sources, and thus can even detect handheld radios onboard dark vessels.”

    Another developing topic is IMO’s efforts, in May, to finalize changes to the global maritime distress system, modernizing and expanding system capabilities, particularly with reference to satellites. Also upcoming: a June meeting of the Sub-Committee on Safety of Navigation, Communication and Search and Rescue (NCSR).

    In commenting about the future, Jones cautioned that cybersecurity issues should be at the forefront of communication planning. She said that system users can get careless while hackers get increasingly sophisticated. “I have heard of users not changing the default passwords of their terminals, for instance,” she added.

  • MR Feb-24#44 Tech Files
Latest Products & Technologies
MarineShaft)
    February 2024 - Maritime Reporter and Engineering News page: 44

    Tech Files Latest Products & Technologies MarineShaft Yanmar Hydrogen MarineShaft specializes in urgent re- Fuel Cell AIP pair/replacement of damaged rudder and Yanmar Power Technology Co., Ltd. propeller equipment along with many (Yanmar PT), a subsidiary of Yanmar on-site repair services. MarineShaft

  • MR Feb-24#39 15,000 TEU AMMONIA CONTAINERSHIP
000 TEU Containership
the)
    February 2024 - Maritime Reporter and Engineering News page: 39

    15,000 TEU AMMONIA CONTAINERSHIP 000 TEU Containership the problematic area of adding carbon like you have with other alternative fu- “Safety has been at the els. When you start to add components center of the design, and into that, carbon is one of the most dif- it will continue to be so ? cult ones

  • MR Feb-24#33 EAL  AND STERN TUBE DAMAGES
STACKING 
not forget any oil)
    February 2024 - Maritime Reporter and Engineering News page: 33

    EAL AND STERN TUBE DAMAGES STACKING not forget any oil leak, big or small, can be catastrophic to the marine environment and marine life, with some EALs found to THE DECKS be only slightly less damaging than the phased-out traditional WITH BEST-IN-CLASS MARINE oils,” said VP of Business Development

  • MR Feb-24#27 AMERICAN ROLL-ON ROLL-OFF CARRIER (ARC)
“MSP really only)
    February 2024 - Maritime Reporter and Engineering News page: 27

    AMERICAN ROLL-ON ROLL-OFF CARRIER (ARC) “MSP really only works when it’s hand in glove with the cargo preference laws. Those are the laws that generate the cargo that moves on US ? ag vessels. Really, it’s cargo – those preference cargoes – that’s the key incentive for US ? ag operators in internatio

  • MR Feb-24#25 MATTHEW HART, MANAGER & PLATFORM LEADER, MARINE & STATIONARY)
    February 2024 - Maritime Reporter and Engineering News page: 25

    MATTHEW HART, MANAGER & PLATFORM LEADER, MARINE & STATIONARY POWER SYSTEMS, WABTEC fuel blends up to 100% are in operation maintenance intervals to make sure that What’s the biggest challenge today, running on both biodiesel and re- our engines don’t have to be touched in your job? newable diesel blends.

  • MR Feb-24#20 MARKETS
FPSO technology dominates the region’s FPS demand.)
    February 2024 - Maritime Reporter and Engineering News page: 20

    MARKETS FPSO technology dominates the region’s FPS demand. duction and storage of low and zero emission energy carriers, In all, 18 countries in West and East Africa are expected such as methanol and ammonia. One exciting development to receive new FPSOs, FLNGs and FPUs between 2024 and leverages

  • MR Feb-24#18 MARKETS
Scan the QR Code to 
Download the Intelatus)
    February 2024 - Maritime Reporter and Engineering News page: 18

    MARKETS Scan the QR Code to Download the Intelatus Floating Production White Paper. Floating Production – A growing segment in transition © AdobeStock_Dolores Harvey The specialized deepwater oil & gas and ? oating offshore wind segments will share many of the same stakeholders and supply chains

  • MN Feb-24#34 Feature
Marine Simulation
All images courtesy Virtual)
    February 2024 - Marine News page: 34

    Feature Marine Simulation All images courtesy Virtual Marine S T R DIMULATOR RAINING IS THE EAL EAL By Eric Haun A legacy of innovation n the commercial maritime and offshore industries, where worker safety and competency are crucial, ef- Virtual Marine’s journey began two decades ago with a sin- fect

  • MT Jan-24#59 All images courtesy Oceanology International
participants)
    January 2024 - Marine Technology Reporter page: 59

    All images courtesy Oceanology International participants and to deliver another packed three days of exhi- Oi24 Events and Features bition and conference activity, features, workshops and one- Oceanology International is able to capitalize on the advan- to-one meetings.” tages of ExCeL’s expansive 18

  • MT Jan-24#52 TECH FEATURE BATTERY SAFETY 
Images courtesy Engineered)
    January 2024 - Marine Technology Reporter page: 52

    TECH FEATURE BATTERY SAFETY Images courtesy Engineered Fluids Inc. This experiment has since been replicated with other batteries and cell con? gurations, and demonstrates the inherent ? re safety of SLIC Technology. jacent cells were not affected, and continued to operate nor- Failures) of electronic

  • MT Jan-24#50 TECH FEATURE BATTERY SAFETY 
BATTERY THERMAL 
MANAGEMENT)
    January 2024 - Marine Technology Reporter page: 50

    TECH FEATURE BATTERY SAFETY BATTERY THERMAL MANAGEMENT IN SUBMARINE APPLICATIONS Dr. David Sundin, Chief Scientist, Engineered Fluids, Inc. evelopments in battery technology have yielded into the hull of the vessel, or heat can be transferred directly compact energy storage systems that output higher

  • MT Jan-24#44 ROVS
ture, port security monitoring and various marine)
    January 2024 - Marine Technology Reporter page: 44

    ROVS ture, port security monitoring and various marine research operations. Likewise, the Voyis Discovery Stereo Camera is a widely applicable piece of technology offering high level clarity and precision in visual captures of underwater envi- ronments and immediate creation of real-time 3D models.

  • MT Jan-24#43 he world beneath the ocean’s surface remains  and extreme)
    January 2024 - Marine Technology Reporter page: 43

    he world beneath the ocean’s surface remains and extreme environments, including the deepest parts of one of the last frontiers of exploration, where the ocean, venturing into uncharted territories, and discover- the mysteries of the deep beckon to be uncov- ing new species and geological phenomena. ered.

  • MT Jan-24#20  the growing low orbit satellite  docking station that)
    January 2024 - Marine Technology Reporter page: 20

    . So we can link up to various wire- push for residency for ] autonomous subsea vehicles, [a subsea less communications including the growing low orbit satellite docking station that needs power]. There’s emerging things like network, Starlink and others. Within that we can offer a cost subsea data centers

  • MT Jan-24#6 MTR Editorial Advisors
Gallaudet Hardy
The Honorable Tim)
    January 2024 - Marine Technology Reporter page: 6

    MTR Editorial Advisors Gallaudet Hardy The Honorable Tim Gallaudet, Kevin Hardy is President PhD, Rear Admiral, U.S. of Global Ocean Design, Navy (ret) is the CEO of creating components and Ocean STL Consulting and subsystems for unmanned host of The American Blue vehicles, following a career

  • MR Jan-24#32 CRUISE FEATURE
uilt by Rauma Marine Constructions, in Rauma)
    January 2024 - Maritime Reporter and Engineering News page: 32

    CRUISE FEATURE uilt by Rauma Marine Constructions, in Rauma, control system and bow thruster motors. Finland, and launched in 2021, the 150-meter-long In addition to the engines, Wärtsilä also supplied its LNG- Aurora Botnia boasts a long list of onboard equip- Pac technology for LNG storage, supply

  • MR Jan-24#21 COATINGS 
Figure 6. The M/V Mark W. 
Barker sports exterior)
    January 2024 - Maritime Reporter and Engineering News page: 21

    COATINGS Figure 6. The M/V Mark W. Barker sports exterior topcoats in The Interlake Steamship Company’s distinctive red (hull) and brown (freeboard). coat with a DFT of 20 to 25 mils. Aluminum oxide was added for at least a decade before dry docking – nearly double the for slip resistance and texture

  • MR Jan-24#20 TECH FEATURE
Figure 4. The vessel’s cargo holds feature)
    January 2024 - Maritime Reporter and Engineering News page: 20

    TECH FEATURE Figure 4. The vessel’s cargo holds feature Figure 5. The walls of the cargo holds All images courtesy of The Interlake Steamship Company ? at bottoms that accommodate the use bene? t from a zinc-based coating that of heavy machinery, which necessitated provides durability in an area

  • MR Jan-24#19 COATINGS 
Figure 1. The M/V Mark W. Barker is speci?)
    January 2024 - Maritime Reporter and Engineering News page: 19

    COATINGS Figure 1. The M/V Mark W. Barker is speci? cally designed to navigate the occasionally narrow rivers and con? ned ports scattered across the Great Lakes region. All images courtesy of The Interlake Steamship Company Figure 2. Distinguished by its Figure 3. The Interlake Steamship square-shaped

  • MR Jan-24#13 wingsail design since 2018 by French  where apparent wind)
    January 2024 - Maritime Reporter and Engineering News page: 13

    wingsail design since 2018 by French where apparent wind takes precedence under engines alone. Critically, despite tech startup AYRO has the potential to over true wind. AYRO’s wingsails gen- originally being developed to be handled leave a much larger legacy; by provid- erate propulsive force even

  • MT Nov-23#7 MTR Editorial Advisors
Gallaudet Hardy
The Honorable Tim)
    November 2023 - Marine Technology Reporter page: 7

    MTR Editorial Advisors Gallaudet Hardy The Honorable Tim Gallaudet, Kevin Hardy is President PhD, Rear Admiral, U.S. of Global Ocean Design, Navy (ret) is the CEO of creating components and Ocean STL Consulting and subsystems for unmanned host of The American Blue vehicles, following a career

  • MR Dec-23#38 G    REAT
of BERLIN EXPRESS
HIPS
S
2023
Photo courtesy)
    December 2023 - Maritime Reporter and Engineering News page: 38

    G REAT of BERLIN EXPRESS HIPS S 2023 Photo courtesy Hapag-LLoyd BERLIN EXPRESS SERI DAMAI Hapag-Lloyd welcomed Berlin Express into its ? eet, the MISC welcomed two of its latest new generation of Lique- ? rst ship of its new Hamburg Express class and the ? rst of a ? ed Natural Gas (LNG) carriers

  • MR Dec-23#19 ROBOTICS
“You’re going to need different capabilities at)
    December 2023 - Maritime Reporter and Engineering News page: 19

    ROBOTICS “You’re going to need different capabilities at different times. I might need to be able to lift and support 150-200 pounds; but I may also need some very ? ne manipulation of small ? ttings to remove that part. So I may have a robot that can support itself for that heavy lift, and it may

  • MR Dec-23#14 Maritime Safety – Safety Management Systems
Photo by Greg)
    December 2023 - Maritime Reporter and Engineering News page: 14

    Maritime Safety – Safety Management Systems Photo by Greg Trauthwein Passenger Vessel Safety How to design, implement, and improve your SMS t’s been four years since the fatal Conception dive boat must include clearly de? ned safety and environmental protec- ? re claimed 34 lives off the California coast