Fuel Cell System

  • German high-speed diesel maker and power systems supplier MTUFriedrichshafen showed its willingness to push back the technological bounds when it announced at last year's SMM Exhibition in Hamburg that it had started development work on fuel cell marine propulsion. German propensity for front-line advance in engineering is also implicit in the nomination of Siemens PEM (proton exchange membrane) fuel cells as part of the integrated propulsion arrangements for the navy's new 212-class submarines.

    Now, classification society Germanischer Lloyd has taken a lead by establishing guidelines for fuel cell propulsion and power systems. Drawing on 13 years' experience with projects relating to submarine fuel cell installations and hydrogen-handling equipment for gas tankers, GL is offering services in fuel cell system and ship plan approval and classification, safety assessment, component certification, project definition, ship design and expert evaluation. In 2000, the society certified a German inland water excursion boat incorporating fuel cell propulsion, the first nonmilitary craft to be so equipped. The concept has appeal for marine applications since it raises the prospect of power generation with improved efficiency and, above all, considerably reduced environmental pollutant release compared to conventional arrangements.

    Fuel cells generate electrical power by combining hydrogen with oxygen, without open flame combustion. The hydrogen can be obtained from methanol, natural gas, petroleum or renewable resources.

  • its own unique challenges and requires special handling beyond what is experienced with diesel. Before diving into the complexities of a hydrogen fuel cell system, it is important to understand the hydrogen fuel itself. Hydrogen can be safely stored in either a liquid or gaseous state. In reality, there

  • better understand how they need to mature before they will be suitable for global shipping, where the carriage of cargo is the main focus. In general, fuel cell systems require less maintenance (potentially offering lower maintenance costs) and long service lives. They also generate less noise than present heavy

  • maritime sector.Once installed, Amogy’s onboard solution will feed liquid ammonia through its cracking modules integrated into a hybrid fuel cell system that will provide zero-carbon power to the vessel’s electric motors. Ammonia, which does not emit CO2 when used as a fuel, has been gaining

  • have a small sized backup/emergency battery, says Thyssenkrupp. A module for surface or near surface transit is being designed at the moment, as the fuel cell system has its strengths for enduring underwater tasks.For long range communication, on long missions, Thyssenkrupp MS is looking to use self-propelled

  • reduce the overall operations and maintenance cost of the vessel.Dr. Pratt also noted that a secondary value proposition of switching to a hydrogen fuel cell system is that the vessel is much quieter than comparable diesel engines and has no on-board pollution. This opens up many possibilities, for example

  • and welding and then commence with outfitting all interior and propulsion aspects of the vessel, including but not limited to: the hydrogen fuel cell system, paint, electrical, control systems and seating. AAM is currently on pace to deliver the vessel in late-2020, but the timeline could potentially

  • play a role on its Icon-class ships being built by Meyer Turku for delivery in 2022 and 2024. In 2017, ABB piloted the cruise industry’s first-ever fuel cell system on a RCL Oasis-class ship, testing its ability to provide energy efficiently ahead of the line installing the technology on upcoming Icon-class

  • perform work in the North Sea this year.Meanwhile, Cellula is also working on onboard fuel cell technology for long-duration, long-endurance AUVs. The fuel cell system will incorporate a novel hydrogen peroxide oxygen delivery system. Complementary to the fuel cell is a suction anchor system so that a fuel-cell-suppor

  • MT Mar-24#4th Cover Glow a little longer.
Superior sensor performance on a)
    March 2024 - Marine Technology Reporter page: 4th Cover

    Glow a little longer. Superior sensor performance on a rmance on a – – RBRtridentfraction of the power RBRtridente teee ackscatter or turbidity with hi i in n n t t th h h he e e s sa a am m m me Measure chlorophyll a, fDOM, and backscatter or turbidity within the same e e sensor package using the

  • MT Mar-24#48 Index page MTR MarApr2024:MTR Layouts  4/4/2024  3:19 PM)
    March 2024 - Marine Technology Reporter page: 48

    Index page MTR MarApr2024:MTR Layouts 4/4/2024 3:19 PM Page 1 Advertiser Index PageCompany Website Phone# 17 . . . . .Airmar Technology Corporation . . . . . . . . . .www.airmar.com . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(603) 673-9570 9 . . . . . .Birns, Inc. . . . . . . . . . .

  • MT Mar-24#45  with Cellula’s hydrogen 
fuel cell technology, supporting)
    March 2024 - Marine Technology Reporter page: 45

    and the ? exibility for ship or port-to- port mission deployments. Cellula’s Solus-LR and Solus- XR platforms will be equipped with Cellula’s hydrogen fuel cell technology, supporting sustainable, long duration operations with zero carbon emissions • Teledyne Marine Acquires Valeport Teledyne Marine agreed

  • MT Mar-24#44 NEW TECH OCEANOLOGY INTERNATIONAL 2024
Image courtesy)
    March 2024 - Marine Technology Reporter page: 44

    NEW TECH OCEANOLOGY INTERNATIONAL 2024 Image courtesy Metron/Cellula Teledyne Marine acquires Valeport: Matt Quartley, MD, Valeport and Ole Søe-Pedersen, VP & Image courtesy Teledyne Marine GM Teledyne Marine announce the deal in London. Pictured (L-R): Cellula Robotics, President, Eric Jackson, Metron

  • MT Mar-24#43 Image courtesy Kongsberg Discovery Image courtesy Teledyne)
    March 2024 - Marine Technology Reporter page: 43

    Image courtesy Kongsberg Discovery Image courtesy Teledyne Marine New Products Teledyne Marine had its traditional mega-booth at Oi, busy start to ? nish. Image courtesy Greg Trauthwein offers quality sub-bottom pro? ling capability without the need tion of offshore windfarms. GeoPulse 2 introduces new

  • MT Mar-24#42 NEW TECH OCEANOLOGY INTERNATIONAL 2024
Image courtesy Greg)
    March 2024 - Marine Technology Reporter page: 42

    NEW TECH OCEANOLOGY INTERNATIONAL 2024 Image courtesy Greg Trauthwein Image courtesy BIRNS MacArtney launches the new ultra-compact ø12.7 mm SubConn Nano connector. Innovative connectivity built on 45 years of ? eld-proven and market-trusted design. Image courtesy MacArtney Birns celebrated its 70th

  • MT Mar-24#41 Image courtesy Outland Technology Image courtesy Exail)
    March 2024 - Marine Technology Reporter page: 41

    Image courtesy Outland Technology Image courtesy Exail Image courtesy Submaris and EvoLogics Vehicles The ROV-1500 from Outland Technology represents a leap forward in underwater robotics, a compact remotely operated vehicle (ROV) weighing in at less than 40 lbs (19kg) the ROV- 1500 is easy to transport

  • MT Mar-24#40 NEW TECH OCEANOLOGY INTERNATIONAL 2024
All photos courtesy)
    March 2024 - Marine Technology Reporter page: 40

    NEW TECH OCEANOLOGY INTERNATIONAL 2024 All photos courtesy MTR unless otherwise noted NEW TECH, PARTNERSHIPS LAUNCH IN LONDON With Oceanology International now one month in the rear-view mirror, MTR takes a look at some of the interesting technologies launched before, during and after the London event.

  • MT Mar-24#39 Photo courtesy Global Ocean Design
Figure 7
A 35Ah AGM)
    March 2024 - Marine Technology Reporter page: 39

    Photo courtesy Global Ocean Design Figure 7 A 35Ah AGM lead-acid battery is tested using the West Mountain Radio CBA to show the effect of simply ? lling the battery voids with mineral oil as a compensating ? uid. The CBA is programmed to cut-off at a voltage of 10.50v. The top line (red) shows the

  • MT Mar-24#38 LANDER LAB #10
Photo courtesy West Mountain Radio
Photo)
    March 2024 - Marine Technology Reporter page: 38

    LANDER LAB #10 Photo courtesy West Mountain Radio Photo courtesy of Clarios/AutoBatteries.com Figure 6 The West Mountain Radio Computerized Battery Analyzer (CBA V) attaches to a Figure 5 laptop by a USB-B cable, and to a battery by Powerpole® Connectors. Exploded view of an AGM lead-acid battery.

  • MT Mar-24#37 miscible barrier ?  uid heavier than seawater (sg=1.)
    March 2024 - Marine Technology Reporter page: 37

    miscible barrier ? uid heavier than seawater (sg=1.026) and lighter than the battery electrolyte (sg=1.265). The original cell vent cap was screwed into the top of the riser pipe to vent the gases associated with charging. Wires were soldered to the lead (Pb) posts. The lead-acid battery was additionall

  • MT Mar-24#36 LANDER LAB #10
Of special interest for marine applications)
    March 2024 - Marine Technology Reporter page: 36

    LANDER LAB #10 Of special interest for marine applications, LiPo batteries are Shipping any kind of lithium battery can be a challenge, and offered in a “pouch” design, with a soft, ? at body. The pouch IATA regs vary with the batteries inside or outside an instru- is vacuum-sealed, with all voids ?

  • MT Mar-24#35 Figure 1
A self-righting vehicle design with buoyancy high)
    March 2024 - Marine Technology Reporter page: 35

    Figure 1 A self-righting vehicle design with buoyancy high and weight low, WHOI’s SeaBED AUV captures the attention of a pair of curious Antarctic penguins as it is deployed from the British research vessel James Clark Ross. Vehicle designers allowed for temperature reduction of battery capacity. Recharge

  • MT Mar-24#34 LANDER LAB #10
BATTERY 
PACKS, 
CHARGING, 
AND CAPACITY)
    March 2024 - Marine Technology Reporter page: 34

    LANDER LAB #10 BATTERY PACKS, CHARGING, AND CAPACITY TESTING Photo Credit: Hanumant Singh / Woods Hole Oceanographic Institution. By Kevin Hardy, Global Ocean Design LLC n ocean lander has many strengths including that produces the current is irreversible. Examples include ? exibility of deployment

  • MT Mar-24#33 regulated industry in the world.” How-
ever, commercial)
    March 2024 - Marine Technology Reporter page: 33

    regulated industry in the world.” How- ever, commercial success depends on many factors, not least a predictable OPEX. Over the past four years, SMD has worked with Oil States Industries to calculate cost per tonne ? gures for prospective customers. Patania II uses jet water pumps to Oil States’

  • MT Mar-24#32 FEATURE  SEABED MINING  
by a sea?  oor plume from its)
    March 2024 - Marine Technology Reporter page: 32

    FEATURE SEABED MINING by a sea? oor plume from its pilot collection system test. pact, nodule collection system that utilizes mechanical and The Metals Company recently signed a binding MoU with hydraulic technology. Paci? c Metals Corporation of Japan for a feasibility study on The company’s SMD

  • MT Mar-24#31 The Allseas-designed production 
system consists of the)
    March 2024 - Marine Technology Reporter page: 31

    The Allseas-designed production system consists of the Hidden Gem production vessel at the surface, an airlift riser system and jumper hose, and the pilot nodule collector vehicle at the sea? oor. Image courtesy of Allseas www.marinetechnologynews.com 31 MTR #3 (18-33).indd 31 4/4/2024 2:12:41

  • MT Mar-24#30 FEATURE  SEABED MINING  
bilical. It has passive heave)
    March 2024 - Marine Technology Reporter page: 30

    FEATURE SEABED MINING bilical. It has passive heave compensation which nulli? es the necott. “The focus since then has been on scaling while en- wave, current and vessel motions that in? uence loads in the suring the lightest environmental impact,” says The Metals power umbilical. The LARS can

  • MT Mar-24#29 n January, Norway said “yes” to sea-
bed mining, adding)
    March 2024 - Marine Technology Reporter page: 29

    n January, Norway said “yes” to sea- bed mining, adding its weight to the momentum that is likely to override the calls for a moratorium by over 20 countries and companies such as I Google, BMW, Volvo and Samsung. Those against mining aim to protect the unique and largely unknown ecology of the sea?

  • MT Mar-24#25 Auerbach explained that ideally, “one  ?  ed layers of)
    March 2024 - Marine Technology Reporter page: 25

    Auerbach explained that ideally, “one ? ed layers of geothermal activity,” noted changes over an area of 8,000 km2. They would have both instruments: seismom- Skett, “and the change in salinity and dis- found up to seven km3 of displaced ma- eters to detect and locate subsurface ac- solved particles for

  • MT Mar-24#19 About the Author
vey with the pipe tracker is not required)
    March 2024 - Marine Technology Reporter page: 19

    About the Author vey with the pipe tracker is not required, resulting in signi? - Svenn Magen Wigen is a Cathodic Protection and corrosion control cant cost savings, mainly related to vessel charter. expert having worked across The major advantage of using FiGS on any type of subsea engineering, design

  • MT Mar-24#18 TECH FEATURE  IMR
There are also weaknesses in terms of)
    March 2024 - Marine Technology Reporter page: 18

    TECH FEATURE IMR There are also weaknesses in terms of accuracy because of FiGS Operations and Bene? ts signal noise and the ability to detect small ? eld gradients. In Conventional approaches to evaluating cathodic protection this process there is a risk that possible issues like coating (CP)

  • MT Mar-24#17 • Integrity assessment, and otherwise covered, e.g.)
    March 2024 - Marine Technology Reporter page: 17

    • Integrity assessment, and otherwise covered, e.g., by rock dump. As for depletion of • Mitigation, intervention and repair. sacri? cial anodes, this can be dif? cult or even impossible to Selecting the best method for collecting the data these work- estimate due to poor visibility, the presence of

  • MT Mar-24#15 sensor options for longer mission periods.
About the)
    March 2024 - Marine Technology Reporter page: 15

    sensor options for longer mission periods. About the Author For glider users working in ? sheries and conservation, Shea Quinn is the Product Line Manager the Sentinel can run several high-energy passive and active of the Slocum Glider at Teledyne Webb acoustic sensors, on-board processing, and imaging