Stealth Technology

  • The U.S. Navy’s controversial USS Zumwalt (DDG 1000) class of guided missile destroyers raises the legitimate question of whether a ship is too transformational, or not transformational enough.

    While the Navy Fact File states that DDG 1000 is the “largest and most technologically advanced surface combatant in the world,” it’s a program that has been in existence for many years. It began as the SC-21 (Surface Combatant for the 21st century) research and development program in 1994, which included the “arsenal ship” concept. From that effort came a 16,000-ton land attack destroyer, designed to support expeditionary forces coming ashore and moving inland, emerged with two long-range guns and 128 missile tubes, called DD-21 (Destroyer for the 21st century). That program evolved into the DD(X) or Zumwalt-class guided missile destroyer, with the characteristic tumblehome hull and stealth technology to operate in littoral waters against threats of the post-Cold War world. It was then designated as DDG 1000, with the intention of evolving that hull into an air defense cruiser called CG(X). In fact, at that time, the Navy was promoting the Surface Combatant Family of Ships, or SCFOS, which included the DD(X), CG(X), a new class of ships called LCS, and the Aegis cruisers and destroyers kept in the most upgraded configurations.

    While many new and transformational technologies and concepts were developed and tested for DDG-1000—to include the Advanced Gun System (AGS) and Long-Range Land Attack Projectile (LRLAP)--the original program of 32 ships did not materialize (it was reduced to 24, then 12, then seven, and eventually three), and the CG(X) concept was cancelled. DDG 1000 was built around the main battery of two 155mm AGS guns that could fire the precision-guided, rocket assisted LRLAP rounds at targets 63 to 100 miles away with pinpoint accuracy. Using the multi-round simultaneous impact (MRSI), four rounds could be fired one after the other, each one on a separate flight path calculated to arrive precisely at the same time, such that the rounds could impact a different side of a structure at exactly the same time. The fact that the rounds cost as much as a Tomahawk missile doomed this projectile, and that doomed the gun, which together necessitated a new purpose for the ship.

    Because the Zumwalts have considerable power margin, they were looked at as a platform for a new rail gun. But despite a significant development investment by the Navy, there is no current rail gun production program.

    The ships remain lethal with 80 peripheral vertical launch system tubes that can launch Tomahawk and other missiles, with the size margin for even bigger missiles yet to enter service. But the AGS gun mounts and associated ammunition storage and handling system, which extends several decks below the guns, will be removed. And that creates an opportunity.

    That opportunity is to the make DDG 1000 a hypersonic strike missile platform. The Navy’s current plan is to replace the gun and associated equipment with the Advanced Payload Module (APM), the same one intended for the Block V Virginia-class submarines, to carry the hypersonic Conventional Prompt Strike (CPS) missile. That weapon reportedly has a 1,700-mile range and can travel at a speed greater than Mach 5.

    According to the Navy, three CPS missiles can be carried in the Advanced Payload Module (APM) which will be installed in the Virginia Payload Module (VPM), this is analogous to the Multiple All-Up-Round Canisters (MACs) that normally carry seven subsonic Tomahawk land-attack cruise missiles, also installed in the VPM. Each Zumwalt-class destroyer would be capable of housing four APMs, and thus up to 12 CPS AURs could be carried in the space currently occupied by the forward AGS gun and its associated magazine equipment below decks. The option exists to do the same for the after AGS gun.

    Today, USS Zumwalt (DDG 1000) and USS Michael Monsoor (DDG 1001) are in commission, while the third, the future USS Lyndon Baines Johnson (DDG 1002), is undergoing sea trials. Even though the program dates back to the 1990s, they are built on cutting-edge technology that is new to the Navy. They are assigned to Surface Development Squadron One (SURFDEVRON One), which is working with the Surface and Mine Warfare Development Center (SMWDC) on to find the best way to use the incredible capabilities possessed by these ships.

    According to Capt. Jeff Heames, commander of SURFDEVRON One, DDG 1000 is an opportunity for the surface force. “We’ve been able to evolve, taking the best parts of the original design, while at the same time exploring new opportunities for the class. Installing the Conventional Prompt Strike weapon system on the Zumwalt class is one example. I believe the Zumwalt class has potential to inspire new warfighting capabilities and tactics, techniques, and procedures (TTP) for the fleet.”


    Zumwalt-class guided-missile destroyer USS Michael Monsoor (DDG 1001) transits to San Francisco in support of San Francisco Fleet Week (SFFW) 2021. SFFW is an opportunity for the American public to meet their Navy, Marine Corps and Coast Guard teams and experience America's sea services. During fleet week, service members participate in various community service events, showcase capabilities and equipment to the community, and enjoy the hospitality of the city and its surrounding areas. (U.S. Navy photo by Ensign Emily D’Italia/Released)

  • (NGFS) at distances almost five times greater than our retired battleships, DDG-1000 has much more bite than the biggest NGFS ships ever built. The stealth technology provides DDG-1000 with the appearance of a yorkie but equips it with the fight of a rotweiller.  As a life-long destroyerman, however, I think

  • MT Mar-24#48 Index page MTR MarApr2024:MTR Layouts  4/4/2024  3:19 PM)
    March 2024 - Marine Technology Reporter page: 48

    Index page MTR MarApr2024:MTR Layouts 4/4/2024 3:19 PM Page 1 Advertiser Index PageCompany Website Phone# 17 . . . . .Airmar Technology Corporation . . . . . . . . . .www.airmar.com . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(603) 673-9570 9 . . . . . .Birns, Inc. . . . . . . . . . .

  • MT Mar-24#47 PRODUCT, PROFESSIONAL, VESSELS, 
MTR
BARGES & REAL ESTATE)
    March 2024 - Marine Technology Reporter page: 47

    PRODUCT, PROFESSIONAL, VESSELS, MTR BARGES & REAL ESTATE FOR SALE Marketplace INNOVATIVE. UNIQUE. PROVEN. ALLAMERICANMARINE.com ???????????????????????????????????????? 9??????????SiC A????????ArC????????????????S???????C?????????9???Ç????????? ????????????????Ý???????S???y???????????????????K???:???? MAR

  • MT Mar-24#45 ronments. The new agreement will address speci?  c techni-
c)
    March 2024 - Marine Technology Reporter page: 45

    ronments. The new agreement will address speci? c techni- cal gaps in the UUV defense and offshore energy markets especially for long duration, multi-payload mission opera- tions where communications are often denied or restricted. As part of the new alliance, Metron’s Resilient Mission Autonomy portfolio

  • MT Mar-24#43 Image courtesy Kongsberg Discovery Image courtesy Teledyne)
    March 2024 - Marine Technology Reporter page: 43

    Image courtesy Kongsberg Discovery Image courtesy Teledyne Marine New Products Teledyne Marine had its traditional mega-booth at Oi, busy start to ? nish. Image courtesy Greg Trauthwein offers quality sub-bottom pro? ling capability without the need tion of offshore windfarms. GeoPulse 2 introduces new

  • MT Mar-24#41 Image courtesy Outland Technology Image courtesy Exail)
    March 2024 - Marine Technology Reporter page: 41

    Image courtesy Outland Technology Image courtesy Exail Image courtesy Submaris and EvoLogics Vehicles The ROV-1500 from Outland Technology represents a leap forward in underwater robotics, a compact remotely operated vehicle (ROV) weighing in at less than 40 lbs (19kg) the ROV- 1500 is easy to transport

  • MT Mar-24#40 NEW TECH OCEANOLOGY INTERNATIONAL 2024
All photos courtesy)
    March 2024 - Marine Technology Reporter page: 40

    NEW TECH OCEANOLOGY INTERNATIONAL 2024 All photos courtesy MTR unless otherwise noted NEW TECH, PARTNERSHIPS LAUNCH IN LONDON With Oceanology International now one month in the rear-view mirror, MTR takes a look at some of the interesting technologies launched before, during and after the London event.

  • MT Mar-24#33 regulated industry in the world.” How-
ever, commercial)
    March 2024 - Marine Technology Reporter page: 33

    regulated industry in the world.” How- ever, commercial success depends on many factors, not least a predictable OPEX. Over the past four years, SMD has worked with Oil States Industries to calculate cost per tonne ? gures for prospective customers. Patania II uses jet water pumps to Oil States’

  • MT Mar-24#32 FEATURE  SEABED MINING  
by a sea?  oor plume from its)
    March 2024 - Marine Technology Reporter page: 32

    FEATURE SEABED MINING by a sea? oor plume from its pilot collection system test. pact, nodule collection system that utilizes mechanical and The Metals Company recently signed a binding MoU with hydraulic technology. Paci? c Metals Corporation of Japan for a feasibility study on The company’s SMD

  • MT Mar-24#30 FEATURE  SEABED MINING  
bilical. It has passive heave)
    March 2024 - Marine Technology Reporter page: 30

    FEATURE SEABED MINING bilical. It has passive heave compensation which nulli? es the necott. “The focus since then has been on scaling while en- wave, current and vessel motions that in? uence loads in the suring the lightest environmental impact,” says The Metals power umbilical. The LARS can

  • MT Mar-24#29 n January, Norway said “yes” to sea-
bed mining, adding)
    March 2024 - Marine Technology Reporter page: 29

    n January, Norway said “yes” to sea- bed mining, adding its weight to the momentum that is likely to override the calls for a moratorium by over 20 countries and companies such as I Google, BMW, Volvo and Samsung. Those against mining aim to protect the unique and largely unknown ecology of the sea?

  • MT Mar-24#27 SEA-KIT USV Maxlimer 
returning from HT-HH 
caldera in)
    March 2024 - Marine Technology Reporter page: 27

    SEA-KIT USV Maxlimer returning from HT-HH caldera in Tonga. © SEA-KIT International data and further assess ecosystem recov- ery. What is known, noted Caplan-Auer- bach, is that the impact of submarine vol- canoes on humans is rare. “The HT-HH eruption was a tragedy, but it was very unusual. It let us

  • MT Mar-24#26 FEATURE  OCEANOGRAPHIC INSTRUMENTATION & SENSORS
Kevin)
    March 2024 - Marine Technology Reporter page: 26

    FEATURE OCEANOGRAPHIC INSTRUMENTATION & SENSORS Kevin Mackay, TESMaP voyage leader and Center head of the South and West Paci? c Regional Centre of Seabed 2030. Kevin in the seismic lab at Greta Point looking at the Hunga Tonga-Hunga Ha’apai volcano 3D map completed with data from the TESMaP voyage

  • MT Mar-24#25 Auerbach explained that ideally, “one  ?  ed layers of)
    March 2024 - Marine Technology Reporter page: 25

    Auerbach explained that ideally, “one ? ed layers of geothermal activity,” noted changes over an area of 8,000 km2. They would have both instruments: seismom- Skett, “and the change in salinity and dis- found up to seven km3 of displaced ma- eters to detect and locate subsurface ac- solved particles for

  • MT Mar-24#23 elatively inactive since 2014, the Hunga Tonga–Hunga)
    March 2024 - Marine Technology Reporter page: 23

    elatively inactive since 2014, the Hunga Tonga–Hunga Ha‘apai (HT-HH) submarine volcano began erupting on December 20, 2021, reaching peak intensity on January 15, 2022. This triggered tsunamis throughout the Pa- R ci? c, destroyed lives and infrastructure, and generated the largest explosion recorded

  • MT Mar-24#20 2024 Editorial Calendar
January/Februay 2024 February 2024)
    March 2024 - Marine Technology Reporter page: 20

    2024 Editorial Calendar January/Februay 2024 February 2024 March/April 2024 Ad close Jan.31 Ad close March 21 Ad close Feb. 4 Underwater Vehicle Annual Offshore Energy Digital Edition ?2?VKRUH:LQG$)ORDWLQJ)XWXUH ?2FHDQRJUDSKLF?QVWUXPHQWDWLRQ 6HQVRUV ?6XEVHD'HIHQVH ?6XEVHD'HIHQVH7KH+XQWIRU ?0DQLS

  • MT Mar-24#19 About the Author
vey with the pipe tracker is not required)
    March 2024 - Marine Technology Reporter page: 19

    About the Author vey with the pipe tracker is not required, resulting in signi? - Svenn Magen Wigen is a Cathodic Protection and corrosion control cant cost savings, mainly related to vessel charter. expert having worked across The major advantage of using FiGS on any type of subsea engineering, design

  • MT Mar-24#18 TECH FEATURE  IMR
There are also weaknesses in terms of)
    March 2024 - Marine Technology Reporter page: 18

    TECH FEATURE IMR There are also weaknesses in terms of accuracy because of FiGS Operations and Bene? ts signal noise and the ability to detect small ? eld gradients. In Conventional approaches to evaluating cathodic protection this process there is a risk that possible issues like coating (CP)

  • MT Mar-24#17 • Integrity assessment, and otherwise covered, e.g.)
    March 2024 - Marine Technology Reporter page: 17

    • Integrity assessment, and otherwise covered, e.g., by rock dump. As for depletion of • Mitigation, intervention and repair. sacri? cial anodes, this can be dif? cult or even impossible to Selecting the best method for collecting the data these work- estimate due to poor visibility, the presence of

  • MT Mar-24#16 TECH FEATURE  IMR
Image courtesy FORCE Technology
OPTIMIZING)
    March 2024 - Marine Technology Reporter page: 16

    TECH FEATURE IMR Image courtesy FORCE Technology OPTIMIZING CATHODIC PROTECTION SURVEY USING NON-CONTACT SENSORS By Svenn Magen Wigen, FORCE Technology he principle behind sacri? cial anodes, which are water structures, reducing the need for frequent repairs and used to safeguard underwater pipelines

  • MT Mar-24#15 sensor options for longer mission periods.
About the)
    March 2024 - Marine Technology Reporter page: 15

    sensor options for longer mission periods. About the Author For glider users working in ? sheries and conservation, Shea Quinn is the Product Line Manager the Sentinel can run several high-energy passive and active of the Slocum Glider at Teledyne Webb acoustic sensors, on-board processing, and imaging

  • MT Mar-24#13 nyone familiar with glider  hardware options integrated)
    March 2024 - Marine Technology Reporter page: 13

    nyone familiar with glider hardware options integrated for a broad Glider answers that need,” said Shea autonomous underwater ve- range of missions. Quinn, Slocum Glider Product Line hicles (AUVs) is certainly “As the use of Slocum Gliders grew, Manager at TWR. A familiar with the popular- so did

  • MT Mar-24#11 assist in identifying mines and act as a 
neutralization)
    March 2024 - Marine Technology Reporter page: 11

    assist in identifying mines and act as a neutralization device. About the Author Bottom mines pose even greater chal- David R. Strachan is a defense analyst and founder of lenges. Unlike contact mines, bottom Strikepod Systems, a research and strategic advisory mines utilize a range of sensors to

  • MT Mar-24#9 from marinas along the western coast. The exact number of)
    March 2024 - Marine Technology Reporter page: 9

    from marinas along the western coast. The exact number of lizing laser detection systems can detect mines just below the mines, as well as their locations, remains largely a mystery, surface, even those hiding in murky water. The Airborne Laser although reports suggest that over three hundred have been

  • MT Mar-24#4 Editorial
NIWA-Nippon Foundation TESMaP/
Rebekah Parsons-Kin)
    March 2024 - Marine Technology Reporter page: 4

    Editorial NIWA-Nippon Foundation TESMaP/ Rebekah Parsons-King www.marinetechnologynews.com ast month marked the resounding NEW YORK 118 E. 25th St., New York, NY 10010 return of Oceanology Interna- Tel: (212) 477-6700; Fax: (212) 254-6271 tional in London, perennially one Lof the world’s most important