MTR100 '13 Sea-Bird Electronics
13431 NE 20th Street
Bellevue, Wash. 98005
Tel: 425-643-9866
Email: [email protected]
Website: www.seabird.com
CEO/President: Dr. Norge Larson
Engineering Director: Tom Mitchell
Number of Employees: 120
Testing Capabilities
More than 40,000 calibrations performed per year, with conductivity, temperature, and dissolved oxygen calibration baths (27), 10,000 psia hydrostatic pressure test vessels (3), deadweight testers, in-house metrology laboratory (water triple-point cells, gallium melting point cells, IAPSO Standard Seawater, 8400B Autosal).
The Company:
Sea-Bird Electronics manufactures oceanographic CTDs and integrated water sampling systems. The CTDs are designed to measure conductivity, temperature, pressure (depth), dissolved oxygen, and other variables, enabling the determination of salinity, density, and other properties contributing to ocean circulation, marine ecosystem function, and global climate dynamics.
The Tech:
CTDs on research vessels, fixed moorings, moored profilers, autonomous drifting profilers (Argo floats), surface salinity floats, AUVs, autonomous gliders, and large-scale networked sensor arrays in ocean observatories present different challenges in acquiring high-accuracy data. The instruments are designed to minimize dynamic errors and preserve initial accuracy. Sea-Bird profiling CTDs share key features that minimize dynamic errors. There is an enclosed flow path within which critical sensors (T, C, DO) are located. Pumping water through the system forces all measurements to be made on the same water sample, with predictable delay and flow effects. By pumping at a constant rate, T and C sensor response times can be engineered to match and remain independent of CTD speed. This dramatically reduces salinity spiking errors produced when sensors with different response times encounter a gradient. Since the water transit time is fixed, lag times between measurements are a known constant, so measurements can be aligned and coordinated relative to pressure in hardware or data processing. Sea-Bird moored CTDs also make measurements in an enclosed flow path, for different reasons. Pumping delivers a new water sample to the conductivity and oxygen sensors, independent of ambient circulation. Between measurements, water is trapped in the sensors and plumbing; anti-foulant concentration accumulates to effective levels by diffusion, preserving initial accuracy for long deployments.
(As published in the July/August 2013 edition of Marine Technologies - www.seadiscovery.com)
Read MTR100 '13 Sea-Bird Electronics in Pdf, Flash or Html5 edition of July 2013 Marine Technology
Other stories from July 2013 issue
Content
- MTR100 13' AXYS Technologies Inc. page: 8
- MTR100 13' Chelsea Technologies Group page: 8
- MTR100 '13 Battelle page: 10
- MTR100 '13 Fischer Connectors SA page: 11
- MTR100 '13 Deep Ocean Engineering page: 12
- MTR100 '13 Greensea Systems, Inc. page: 12
- Oil Pollution Risk Assessment page: 12
- MTR100 '13 JW Fishers Mfg. page: 13
- MTR100 '13 Forum Energy Technologies, Inc. page: 14
- MTR100 '13 Kraken Sonar Systems Inc. page: 15
- MTR100 '13 Oceanic Platform of the Canary Islands page: 16
- MTR100 '13 OceanScience page: 16
- SOFEC Completes at Texas Shipyard CALM Buoys page: 16
- MTR100 '13 LinkQuest Inc. page: 18
- MTR100 '13 Marinexplore page: 18
- MTR100 '13 Zupt LLC page: 19
- MTR100 '13 Materials Systems Inc. page: 20
- MTR100 '13 RPS Evans-Hamilton page: 20
- MTR100 '13 McLane Research Laboratories, Inc. page: 21
- MTR100 '13 Kongsberg Maritime page: 22
- Incat Crowther Designs DSV Trio page: 22
- MTR100 '13 Nortek page: 23
- MTR100 '13 Ocean Sonics Ltd. page: 24
- MTR100 '13 OHMSETT page: 24
- MTR100 '13 Princetel, Inc. page: 24
- MTR100 '13 SeeByte page: 25
- MTR100 '13 Hydroid, Inc., a Kongsberg Maritime Company page: 26
- General Dynamics Tests U.S. Navy UUVs page: 26
- MTR100 '13 Shark Marine Technologies Inc. page: 27
- MTR100 '13 Quality Positioning Services (Q.P.S.) B.V. page: 28
- MTR100 '13 CDL page: 28
- ASV Research Contract page: 28
- MTR100 '13 SEA CON page: 30
- MTR100 '13 EvoLogics GmbH page: 31
- MTR100 '13 Sea-Bird Electronics page: 31
- MTR100 '13 Aanderaa Data Instruments, a Xylem brand page: 32
- MTR100 '13 Seafloor Systems, Inc page: 32
- Offshore Wind Spend $20 Billion Per Year page: 32
- MTR100 '13 SEAMOR Marine page: 33
- MTR100 '13 All American Marine page: 33
- MTR100 '13 VideoRay LLC page: 34
- MTR100 '13 SIDUS Solutions LLC page: 35
- MTR100 '13 Soil Machine Dynamics Ltd. page: 36
- Eagle Eyes on Mooring page: 36
- MTR100 '13 South Bay Cable Corp. page: 37
- MTR100 '13 SubChem Systems, Inc. page: 37
- MTR100 '13 Bluefin Robotics Corporation page: 38
- MTR100 '13 SurfaceSupplied, Inc. page: 39
- MTR100 '13 Diving Unlimited International, Inc. page: 40
- MTR100 '13 Tritech International Ltd page: 41
- MTR 100 '13: Meridian Ocean Services, LLC page: 42
- Turbulence Microstructure Measurements from a Wave Powered Profiler page: 42
- MTR10 '13: Triton Imaging page: 43
- Meet The "Teledyne Twelve” page: 44
- MTR100 '13: Teledyne Impulse, Teledyne DGO & Teledyne ODI page: 48
- Development & Deployment of Brazil’s First Buoy System page: 48
- MTR100 '13: Teledyne Benthos, Teledyne Webb Research & Teledyne Gavia page: 49
- MTR100 '13: Teledyne BlueView, Teledyne Odom Hydrographic, Teledyne RESON page: 52
- Sailing for Science page: 52
- MTR100 '13: Birns Inc. page: 54
- MTR100 '13 2G Engineering page: 55
- MTR100 '13 Xsens page: 55
- MTR100 '13: OneOcean Corporation page: 56
- MTR100 '13 All-Sea Underwater Solutions page: 57
- MTR100 '13 Fugro LADS Corporation page: 57
- MTR100 '13 L-3 Communications Klein Associates page: 57
- MTR100 '13: Chet Morrison Contractors page: 58
- MTR100 '13: Markey Machinery Co., Inc. page: 59
- MTR100 '13: Applied Acoustics page: 59
- MTR100 '13: Sonardyne International Ltd. page: 60
- MTR100 '13 Aquatec Group Ltd. page: 61
- MTR100 '13: PCCI, Inc. page: 61
- MTR100 '13: ECA page: 62
- MTR100 '13 ASI Group Ltd. page: 63
- MTR100 '13: Rapp Hydema NW LLC page: 63
- MTR100 '13 MacArtney Underwater Technology Group page: 64
- MTR100 '13 AXSUB Inc. page: 65
- MTR100 '13 Remote Ocean Systems (ROS) page: 65
- SMD Improves 2013 Work Class ROV Range page: 65
- MTR100 '13 Autonomous Surface Vehicles (ASV) page: 66
- Future ROV Designers page: 66
- MTR100 '13 BioSonics page: 67
- MTR100 '13 Caris page: 67
- MTR100 '13 SeaBotix page: 68
- MTR100 '13 CONTROS Systems & Solutions GmbH page: 69
- MTR100 '13 EdgeTech page: 69
- MTR100 '13 Falmouth Scientific, Inc. page: 70
- MTR100 '13 Rockland Scientific page: 70
- MTR100 '13 ROMOR Ocean Solutions page: 71
- MTR100 '13 UTEC Survey page: 71
- MTR100 '13 FarSounder, Inc. page: 71
- MTR100 '13 Hemisphere GNSS page: 71
- MTR100 '13 Saab Seaeye Ltd. page: 72
- Demand for ROV Pilot Technicians Grows page: 72
- MTR100 '13 HELZEL Messtechnik GmbH page: 73
- MTR100 '13 SeaView Systems, Inc. page: 73
- MTR100 '13 Imagenex Technology Corp. page: 74
- MTR100 '13 Southwest Electronic Energy Group page: 74
- From Tiny Electrical Impulses Grows a $2.6B Giant MOOG page: 74
- MTR100 '13 InterMoor page: 75
- MTR100 '13 WFS: Wireless for Subsea page: 76
- MTR100 '13 Turner Designs page: 76
- Making the Connection SEA CON page: 78